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In 50 Words 
Or Less 
• Too many predictors 

and not enough obser-
vations can present 
problems for a predic-
tion model. 

• There are five variable 
reduction techniques to 
address this scenario. 

• An example illustrates 
the results of these 
techniques on the same 
data set with the same 
dependent and indepen-
dent variables.
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STATISTICS

COLLAPSING VARIABLES IN a factor analysis 

can have dangerous implications, and it also can be difficult to 

interpret the resulting factors.1 But what if you have no choice? 

Increasingly in many fields, the number of variables collected 

can dwarf the observations available for each variable. The 

aims of your overall analysis will play a role in how you deal 

with this problem statistically:

•  If you hope to create a good overall prediction model, it 

may be reasonable to include many more predictors than 

if you’re concerned with statistical significance of the in-

dividual independent variables. This may overspecify your 

model, however, and give you a perfect prediction if you use 

all of the variables.
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• If you’re testing a specific statistical model in which 

there may be reasons to include particular predic-

tors, this type of theory-based model testing in-

volves finding the predictors that provide a close 

connection between your theory and research ques-

tion. In this case, understanding the relationship be-

tween the dependent variable and your independent 

variables may be most important before reducing 

the number of independent variables.

• If assessing relative importance of predictors is 

your aim, you may use a multistep process that in-

cludes principle components and factor analysis, 

among other techniques.2 

While you may start by examining the bivariate re-

lationship between the predictors and your dependent 

variable, identifying those predictors that are highly in-

tercorrelated is equally important. It’s this scenario in 

which variable reduction techniques can be most useful. 

These large analyses—in which independent vari-

ables overwhelm the sample size in modeling—exist 

across many fields, from science to marketing to busi-

ness. For example, in analysis of DNA sequence data, 

microarray data (gene expression) and protein expres-

sion data, 100,000 variables or more may be present 

with a much smaller sample size—in the hundreds, per-

haps.3 In analyzing marketing demand through online 

data tracking, thousands of variables are available for 

each unique visit to an organization’s website.4 

When the number of predictors is much greater than 

the number of observations, there are five statistical 

methods that can be used. These statistical techniques 

have been implemented in statistical software such as 

Statistical Product and Service Solutions (SPSS), Sta-

ta, Statistical Analysis System (SAS) and R.

To start, there are two simple approaches based on 

least-squares regression: stepwise forward regression 

and best subsets regression. For both methods, start 

with a model consisting only of the intercept. For both, 

add the predictor to the model with the smallest p-val-

ue (for that reason, all models with just one predictor) 

and compare p-values.

1. Stepwise forward selection 
Add all possible predictors to the model in the last step 

and expand the model with the one with the smallest 

p-value or the one increasing the measure of fit (R2 or 

standard error of the estimate).

Continue until some stopping criterion is met (that 

is, no increase in the R2), and use the model with the 

highest R2 or smallest standard error of the estimate 

(SEE) as your model.

2. Best subsets regression
Keep the best one-variable model using R2. Compute 

all least-squares regression models with all possible 

two-variable models. Keep the best two-variable mod-

el. Compute all least-squares regression models with 

all possible three-variable models. Keep the best three-

variable model. 

Number of variables Best fit (R2)

Stepwise regression 9 0.988

Best subsets regression 9 0.921

Principal components 
analysis and regression

13 (in 3 factors) 0.897

Ridge regression 67 (weight = 0.05) 0.997

LASSO analysis 15 0.959

Summary of overall  
results   /   TABLE 1

 Unstandardized 
coefficients

B Std. error p-value

Median home price: 2002 1.015 0.021 0.000

Percentage one-year increase 259368.274 17260.934 0.000

Students per computer 933.124 279.620 0.001

Library books per capita 1194.093 296.471 0.000

Colon/rectal-SIR 168.325 48.747 0.001

Property tax rate −2250.794 529.125 0.000

Average tax bill 7.785 1.933 0.000

Average water bill −25.425 8.284 0.003

MCAS SciTech—8th grade −181.720 68.074 0.009

R2 = 0.988

Stepwise regression results   /   TABLE 2

LASSO = least absolute shrinkage and selection operator

LASSO = least absolute shrinkage and selection operator 
MCAS SciTech = Massachusetts Comprehensive Assessment System 
science/technology  
SIR = standardized incidence ratio 
Std. = standard 
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Continue until all combinations of models with all 

variables are fit. You may want to limit this to some 

number k < n < p, in which n is the sample size and 

p is the number of variables available. Rank the fitted 

models by highest to lowest R2, and choose the model 

with the highest value. For models with similar R2 val-

ues, choose the model with the smallest number of 

variables.

The advantages of these first two approaches are 

that they’re both easy to implement, automatic algo-

rithms exist and they always produce a result. A disad-

vantage of both approaches is that stopping rules can 

be unstable because a small perturbation of the data 

can lead to different results. If independent variables 

are highly correlated, the resulting model will include 

only one of the variables. So you may miss the “best” 

model, making the results difficult to interpret. It also 

can be time consuming when building a best subsets 

model.

Overall, the stepwise regression and best subsets 

regression methods are often included as automated 

functions in many statistical packages. These pack-

ages often include options for changing the stopping 

criterion (R2, standard error of the estimate, F-test or 

p-value) and the number of iterations to find a solution. 

The resulting model is the most optimized for the data, 

but it’s difficult to interpret the relationship of predic-

tors included and the outcome or the relationship be-

tween the predictors. 

These methods are optimized for the data set, but 

there is a chance the model will pick unimportant fea-

tures that are unique to the modeling data set and not 

important to an overall inferential model. Therefore, it 

may fail on new data sets. 

One way to combat this issue is to have a training 

data subset to build the model, and a smaller testing 

data subset to assess how well the model predicts oth-

er data. With data being sparse compared to variables, 

however, this is not often possible. 

Both stepwise and best subsets regression are un-

biased methods and do not include any previous infor-

mation of how variables are known to interact. This 

makes understanding the outcome difficult, but it is an 

easy way to build a prediction model.

3. Principle components with regression
Perform principal components analysis (PCA), or a 

factor analysis, on the design matrix X (covariance 

or correlation matrix) to create a set of smaller, un-

correlated and new variables:

• PCA will give you a new design matrix Z. 

• Use the first k < n < p total variables as your new 

variables based on the plot of the eigenvalues by 

component number, called a Scree plot, or the 

amount of variance explained.

• Perform an ordinary linear regression with the new 

variables.

The advantage of the new design matrix Z is that it’s 

orthogonal (by construction), generally reduces model 

size, and resulting components can usually be inter-

preted. The disadvantage is that you have not used the 

dependent variable when reducing the number of inde-

pendent variables when using PCA. The resulting fac-

tors are orthogonal to each other, but you don’t know 

how strong their relationship is to Y. 

It is not always clear how many of the new factors 

you should use in the final model. This is also a two-

stage method in which the factors are identified first 

and then used in the linear regression for prediction.

Similar to factor analysis, PCA is a transformation 

of the original, potentially correlated and independent 

variables into new variables, called factors, as a linear 

combination of the original variables. These new vari-

ables are used to perform the regression analysis to 

create a model. 

Because PCA is carried out only on the indepen-

dent variables without knowing the strength of their 

relationship to the dependent variable, examining the 

correlation with Y and only including independent 

variables with a strong relationship to Y in the PCA is 

STATISTICS

Ridge trace plot of Boston  
towns’ data   /   fIguRE 1
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1 78.2 136.8 57,015 X

1 49.5 451 86,771 X

2 87.3 39.1 43,736 X X

2 82.6 90.2 51,131 X X

3 89.3 18.8 40,260 X X X

3 89.2 20.3 40,532 X X X

4 90 13.9 39,249 X X X

4 90 14.1 39,291 X X X X

5 90.4 10.9 38,533 X X X X X

5 90.4 11.7 38,695 X X X X X

6 90.8 8.7 37,953 X X X X X X

6 90.8 9.3 38,066 X X X X X X

7 91.2 7 37,433 X X X X X X X

7 91.1 7.5 37,532 X X X X X X X

8 91.4 5.8 36,996 X X X X X X X X

8 91.4 6 37,047 X X X X X X X X

9 91.6 6 36,840 X X X X X X X X X

9 91.6 6.3 36,888 X X X X X X X X X

10 91.8 6 36,628 X X X X X X X X X X

10 91.8 6.1 36,639 X X X X X X X X X X

11 91.9 7.1 36,631 X X X X X X X X X X X

11 91.9 7.1 36,634 X X X X X X X X X X X

12 92 7.9 36,585 X X X X X X X X X X X X

12 92 8 36,610 X X X X X X X X X X X X

13 92.1 8.8 36,557 X X X X X X X X X X X X X

13 92.1 9 36,586 X X X X X X X X X X X X X

14 92.2 9.9 36,565 X X X X X X X X X X X X X X

14 92.1 10.2 36,631 X X X X X X X X X X X X X X

15 92.2 11.3 36,636 X X X X X X X X X X X X X X X

15 92.2 11.9 36,757 X X X X X X X X X X X X X X X

16 92.2 13.2 36,826 X X X X X X X X X X X X X X X X

16 92.2 13.3 36,834 X X X X X X X X X X X X X X X X

17 92.2 15.2 37,019 X X X X X X X X X X X X X X X X X

17 92.2 15.2 37,025 X X X X X X X X X X X X X X X X X

18 92.2 17.1 37,207 X X X X X X X X X X X X X X X X X X

18 92.2 17.1 37,225 X X X X X X X X X X X X X X X X X X

19 92.2 19 37,412 X X X X X X X X X X X X X X X X X X X

Truncated output from subset regression showing change  
in R2 and Mallow’s Cp   /   TABLE 3

MCAS = Massachusetts Comprehensive Assessment System  

SAT = Scholastic Aptitude Test 



September 2013  •  QP 39

one possible extension of the method. 

Additionally, it’s good to use a subset of the data as 

a testing set to assess the model’s accuracy and error. 

A great benefit of PCA is its ability to reduce many col-

linear variables into only a few significant variables 

for the model. Significant variables are determined by 

finding the inflection point (where the line flattens) on 

a Scree plot. 

The new PCA variables may seem more complex 

because they are combinations of the original data, but 

often they can hint at underlying associations of the 

variables. In a model trying to predict heart attacks, 

for example, the variables of height and weight are 

combined positively into a single, strongly significant 

component. This is not surprising because obesity (a 

high weight-to-height ratio) is a major predictor of 

heart attack risk. 

PCA is a useful technique for reducing the number 

of variables—especially when there is a known corre-

lation among the variables—and can be a quick meth-

od to develop an optimized model.

4. Ridge regression
Ridge regression shrinks the regression coefficients 

by adding a penalty to the least-squares criterion. It 

does this by penalizing the residual sum of squares 

by adding a weight times the sum of the values of 

the squared regression coefficients where large coef-

ficients are down-weighted. This reduces the overall 

variability of the prediction model and is a trade-off 

between goodness of fit (residual sum of squares) and 

a penalty:

1. The usual residual sum of squares = minimum (∑[Y 

– Xβ]2) or the square of observed minus the predict-

ed values of the dependent variable.

2. The coefficient penalty = λ∑(β2) is added to the re-

sidual sum of squares with a calculated weight λ 

that shrinks large values of the coefficients.

3. For λ = 0, this reduces to the usual least-squares fit. 

For λ = ∞, all of the coefficients are shrunk to equal 

zero. By varying λ, a plot called the ridge trace can 

be used to identify where the coefficients become 

stable (see example in Figure 1, p. 37).

The advantage of ridge regression is that it’s capable 

of reducing the variability and improving the accuracy 

of linear regression models. These gains are largest in 

the presence of multicollinearity among the indepen-

dent variables.

What ridge regression doesn’t do is variable selec-

tion, and it fails to take into account the fact that a par-

simonious model with few parameters can’t zero out 

coefficients; thus, you either end up including all the 

coefficients in the model or none of them. 

There is no rule for identifying the appropriate λ 

and, while algorithms for ridge regression are included 

in major statistical software packages, the ridge re-

gression method is not as automatic to apply as least-

squares regression.

Ridge regression presents one option for reducing 

the variable weights, but not the number of variables. 

It produces a stable regression—in contrast to least 

squares alone—but leaves all the independent vari-

ables in the model, although many now have almost 

zero weight. Evaluation of the models is done by exam-

ining the ridge trace plot.

5. LASSO regression
This method is similar to ridge regression because it 

penalizes the regression coefficients, but it uses the ab-

solute size of the coefficients rather than the square of 

STATISTICS

Step Cp  R2 Variable added

1 448.891 0.000

2 407.044 0.074 +sat

3 148.272 0.510 +culture

4 52.070 0.675 +perpupil

5 31.854 0.712 +pctcoll4

6 32.986 0.714 +popdens

7 32.926 0.717 +polfire

8 31.745 0.722 +vote

9 27.533 0.753 +minority

10 25.526 0.779 +hsgradpc

11 19.618 0.803 +intclass

12 13.130 0.827 +cardeath

13 10.749 0.844 +pctpover

14 12.174 0.875 +unemp

15 13.369 0.897 +incr5

16 15.190 0.927 +popn

17 17.000 0.959 +poldense

Variables added using the 
LASSO technique   /   TABLE 4

LASSO = least absolute shrinkage and selection operator 
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the coefficients to compute the penalty weight.5 

By penalizing—or constraining the sum of the ab-

solute values of the estimates—in the least absolute 

shrinkage and selection operator (LASSO) method, 

you end up with some of the parameter estimates at 

exactly zero, so you will reduce the number of inde-

pendent variables in the model. The larger the penalty, 

the more the coefficient estimates are shrunk toward 

zero:

• The usual residual sum of squares = minimum (∑[Y 

– Xβ]2) or the square of observed minus predicted 

values of the dependent variable.

• Coefficient penalty = λ∑(||β||), in which ||β|| is the 

absolute value of the coefficient, is added to the 

residual sum of squares with a calculated weight λ 

that shrinks large values of the coefficients.

• As the weight gets larger, the number of indepen-

dent variables decreases, as shown in Figure 1.

In contrast to ridge regression, the LASSO method 

automatically does parameter shrinkage and variable 

selection. For large sample sizes and a large number of 

variables, the result approximates the least-squares so-

lution. The method also works well with a large num-

ber of variables that are not multicollinear, as well as 

in the presence of multicollinearity. 

The method and results, however, may change for 

different methods of scaling the data. The method is 

designed for working with standardized variables us-

ing the correlation matrix. LASSO algorithms are ex-

tremely fast compared with subset regression or PCA.

Designed to be computationally fast 

for large data sets that are accompanied 

by a large number of variables, LASSO 

provides an automatic way to scale and 

select your variables in many cases—in-

cluding sparse matrixes. The fit of the 

models can be examined in a plot similar 

to the ridge trace.

Single data set example
A data set that contains multiple aspects 

about the towns surrounding Boston can 

help illustrate each technique. The out-

come variable is the prediction of me-

dian home price in 2004 based on all the 

other variables. 

The data set has 67 variables for 61 

towns with no missing data and 89 towns 

with partial data. For some techniques, 

the full data set can be included for es-

timation, while other methods can use 

only complete data. All five techniques 

were implemented in SPSS, and the ridge 

regression and LASSO methods were 

validated in Stata because the syntax for 

the SPSS analyses aren’t part of the main 

statistics component. 

Table 1 (p. 36) summarizes the model-

fitting results for all five techniques, with 

stepwise and subsets regression shown 

as separate models. In terms of R2 values, 

stepwise and ridge regressions give the 

highest values (Table 2, p. 36, and Figure 

 Unstandardized 
coefficients

Sig.B Std. error

(Constant) 400477.740 7542.081 0.000

factor one—public safety 103431.549 7567.348 0.000

factor two—health 42083.739 7567.348 0.000

factor three—environment 24804.289 7567.348 0.001

R2 = 0.897

Factor variables

Public safety:

Violent crimes per capita

Structure fires per capita

Motor vehicle deaths per capita

Public spending per capita

Health:

Incidence per 100,000 of HIV

Incidence per capita of sexually transmitted 
diseases

Standardized incidence ratio of cancer

Heart disease deaths per capita

Overall death rate

Environment:

Percentage open space

Air pollution sources per square mile

Number of contaminated sites per square mile

Presence of radon

Results of principal components  analysis 
and regression   /   TABLE 5

Sig. = significance 
Std. = standard
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1). Ridge regression includes all of the variables, albeit 

with different weights, so a higher R2 is expected. 

Stepwise regression includes all the possible vari-

ables showing an increase in R2 and, similar to LASSO, 

has a stopping algorithm based on either increasing R2 

or decreasing SEE or Mallow’s C
p
, which is a goodness 

of fit statistics that incorporates the sample size and 

number of variables. A small value of C
p
 accompanying 

a large R2 is desired.

Best subsets regression (Table 3, p. 38) and LASSO 

(Table 4, p. 39) give the next best fit of the model. Both 

use algorithms to find the smallest number of variables 

giving the best fit. With best subsets regression, all pos-

sible model combinations are fit and compared. The 

user picks the best model usually based on the largest 

R2 combined with the smallest C
p
. 

With LASSO, the algorithm seeks to minimize any 

multicollinearity in the independent variables, and the 

output includes a table showing the effect of adding 

additional variables and a plot of the variables by im-

portance. The optimal variables are shown by those 

that increase R2 and decrease C
p
.

Principal components and regression (Table 5) 

show the smallest R2 and are the most difficult to 

implement because of decisions regarding how many 

factors to include, which variables are associated with 

which factors, and whether these factors can be easily 

interpreted. Having the worst fit of all the techniques, 

this also illustrates that this form of analysis does not 

include the dependent variable as a criterion for the 

calculation of factors.

Depending on the data set
None of the results from the techniques were identi-

cal to one another, although similar models were 

found between pairs of methods: stepwise regression 

and ridge regression, and the subsets regression and 

LASSO techniques.

The diversity in the fit of the models illustrates that 

some modeling techniques are better when prediction 

is the goal, while others are best when identifying un-

correlated or less-correlated predictors. 

The best method with the best fit will change, how-

ever, depending on the data set, the relationships be-

tween independent variables, and the relationship be-

tween the independent and dependent variables.  QP
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